• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

碱渣回填地下废弃盐腔室内一维沉降试验研究

徐玉龙, 杨春和, 陈锋, 李银平, 冀国栋

徐玉龙, 杨春和, 陈锋, 李银平, 冀国栋. 碱渣回填地下废弃盐腔室内一维沉降试验研究[J]. 岩土工程学报, 2014, 36(3): 589-596. DOI: 10.11779/CJGE201403025
引用本文: 徐玉龙, 杨春和, 陈锋, 李银平, 冀国栋. 碱渣回填地下废弃盐腔室内一维沉降试验研究[J]. 岩土工程学报, 2014, 36(3): 589-596. DOI: 10.11779/CJGE201403025
XU Yu-long, YANG Chun-he, CHEN Feng, LI Yin-ping, JI Guo-dong. Experimental study on one-dimensional settlement of alkali wastes backfilled to abandoned salt caverns[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 589-596. DOI: 10.11779/CJGE201403025
Citation: XU Yu-long, YANG Chun-he, CHEN Feng, LI Yin-ping, JI Guo-dong. Experimental study on one-dimensional settlement of alkali wastes backfilled to abandoned salt caverns[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 589-596. DOI: 10.11779/CJGE201403025

碱渣回填地下废弃盐腔室内一维沉降试验研究  English Version

基金项目: 致 谢:本文试验得到了江苏井神盐化股份有限公司的项目资助,在此表示感谢!; 国家自然科学基金项目(51304187); 国家自然科学基金面上项目(41272391)
详细信息
    作者简介:

    徐玉龙(1988- ),男,博士研究生,主要从事工业固废地下处置研究。E-mail: xsy_xyl@126.com。

  • 中图分类号: TU43

Experimental study on one-dimensional settlement of alkali wastes backfilled to abandoned salt caverns

  • 摘要: 盐矿水溶开采产出卤水的同时会在地下形成大量的废弃溶腔,而盐化工企业利用采出的卤水制碱时会产生大量的固体废渣(即碱渣),将碱渣与饱和卤水混合制成浆体注填到废弃盐腔的过程称为碱渣回填废弃盐腔。碱渣在充满卤水的溶腔内的沉降特性对回填效果会产生重要影响,作为初步研究,对两种不同类型碱渣与饱和卤水混合而成的碱渣浆进行了室内一维沉降试验研究。试验发现:黏粒含量少的碱渣浆絮团发育程度低,絮团小而相互独立,沉降类型为絮凝均匀沉降,黏粒含量多的碱渣浆絮团发育程度高,絮团大而联结成网,发生絮网沉降;碱渣浆沉降过程可以分为4个阶段:絮凝阶段、沉降阶段、主固结阶段和次固结阶段;对比两种碱渣的沉降过程发现,发生絮网沉降的碱渣浆在前3个阶段用时均较长;沉降基本结束后,形成的沉积体孔隙比较大,沉积体内仍含有大量的自由水。本研究揭示了两种不同类型碱渣的一维沉降规律,为进一步探索碱渣沉降固结机理及现场碱渣回填废弃盐腔工程提供一定参考。
    Abstract: The method of solution mining to explore halite will generate large quantities of abandoned caverns, while soda ash production whose raw materials are the brine produced by solution mining will generate abundant alkali wastes. The process that alkali wastes are mixed with the brines into slurry and pumped back into the abandoned caverns is defined as in-situ backfill. The settling behavior of the slurry is very important to the backfill effect. As a preliminary study to investigate the behavior of waste particles in brine-filled caverns, laboratory one-dimensional settlement experiments on two types of alkali wastes collected from different soda ash production techniques are conducted. The main results are: (1) the settlement of alkali wastes with a small amount of clay particles, whose flocs are small and independent, can be classified as uniform settling of flocculation, and that with a large amount of clay particles, whose flocs are large and connected, is net settling of flocculation; (2) the settling process of waste particles can be divided into four phases: flocculation phase, settling phase, primary consolidation phase and secondary consolidation phase; (3) by comparing the settling processes, durations of the first three phases are longer for the slurry with net settling of flocculation; (4) the void ratios of the two sediments are both very large when the primary consolidation is completed, indicating that there is a large amount of free water in the sediments. The settling behavior of the two types of alkali wastes is revealed, and the relevant factors are analyzed. This research may provide certain reference value for the study of the settling mechanism and site backfill.
  • [1] 严 驰, 李 琳, 孙月红. 碱渣压缩变形特性[J]. 青岛建筑工程学院学报, 2003, 24(4): 8-11. (YAN Chi, LI Lin, SUN Yue-hong. Deformation characteristics of alkali waste [J]. Journal of Qingdao Institute of Architecture and Engineering, 2003, 24(4): 8-11. (in Chinese))
    [2] 王建成, 朱文剑. 国内外盐化工产业发展的现状[J]. 产业经济, 2012, 6: 70-73. (WANG Jian-chen, ZHU Wen-jian. Domestic and overeas saline chemical industry development[J]. Industrial Economy, 2012, 6: 23-25. (in Chinese))
    [3] 李学锋, 唐绍辉, 范育青. 水溶开采地面沉降的机理分析与控制措施[J]. 化学矿物与加工, 2008(11): 27-29. (LI Xue-feng, TANG Shao-hui, FAN Yu-qing. Mechanism analysis and control methods of subsidence induced by solution mining[J]. Industrial Minerals and Processing, 2008(11): 27-29. (in Chinese))
    [4] LANGER M. Underground disposal of wastes requiring special monitoring in salt rock masses[C]// Proceedings of 3rd Conference on the Mechanical Behavior of Salt. Germany: Clausthal-Zellerfeld Press, 1993: 583-603
    [5] HOTHER H A, CHALLINOR D. The use of salt cavities for the disposal of wastes[C]// SMRI Meeting Paper, Hannover, Solution Mining Research Institute, 1994.
    [6] WAREEN J K. Evaporites: sediments, resources and hydrocarbons[M]. New York: Springer, 2006.
    [7] VEIL J. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns[R]. Final Report. NM: Sandia National Laboratories, 1996.
    [8] 王 芳, 徐竹青, 严丽雪, 等. 碱渣土工试验方法及其工程土特性研究[J]. 岩土工程学报, 2007, 29(8): 1211-1214. (WANG Fang, XU Zhu-qing, YAN Li-xue, et al. Study on test methods and geotechnical properties of soda residue[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1211-1214. (in Chinese))
    [9] 严 驰, 宋旭坤, 朱 平, 等. 高含水率碱渣的强度特性试验研究[J]. 岩土工程学报, 2007, 29(11): 1683-1688. (YAN Chi, SONG Xu-kun, ZHU Ping, et al. Experimental study on strength characteristics of soda residue with high water content[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1683-1688. (in Chinese))
    [10] IMAI G. Settling behavior of clay suspensions[J]. Soils and Foundations, 1980, 20(2): 61-76.
    [11] IMAI G. Experimental studies on sedimentation mechanism and sediment formation of clay materials[J]. Soils and Foundations, 1981, 21(1): 7-20.
    [12] BEEN K. Stress strain behavior of a cohesive soil deposited under water[D]. Oxford: Oxford University, 1980.
    [13] AZAM S, JEERAVIPOOLVARN S, SCOTT J D. Numerical modeling of tailings thickening for improved mine waste management[J]. Journal of Environmental Informatics, 2009, 13(2): 111-118.
    [14] JEERAVIPOOLVARN S. Compression of oil sand tailings [M]. Edmonton: University of Albert, 2005.
    [15] BLEWETT J, MCCARTER W J, CHRISP T M, et al. Monitoring sedimentation of a clay slurry[J]. Géotechnique, 2001, 51(8): 723-728.
    [16] 詹良通, 童 军, 徐 洁. 吹填土自重沉积固结特性试验研究[J]. 水利学报, 2008, 39(2): 201-205. (ZHAN Liang-tong, TONG Jun, XU Jie. Laboratory study on self-weight sedimentation and consolidation behaviors of hydraulic-dredged mud[J]. Journal of Hydraulic Engineering, 2008, 39(2): 201-205. (in Chinese))
    [17] 刘 莹, 肖树芳, 王 清. 吹填土室内模拟试验研究[J]. 岩土力学, 2004, 25(4): 518-528. (LIU Ying, XIAO Shu-fang, WANG Qing. Research on indoor scale-down test of dredger fill[J]. Rock and Soil Mechanics, 2004, 25(4): 518-528. (in Chinese))
    [18] 赵 明. 黏性泥沙的絮凝及对河口生态的影响研究[D]. 北京: 清华大学, 2010. (ZHAO Ming. On flocculation of cohesive sediment and its ecology effect in estuaries[D]. Beijing: Tsinghua University, 2010. (in Chinese))
    [19] 李富根. 黏性泥沙悬浮体系絮凝特性的初步研究[D]. 北京: 清华大学, 2005. (LI Fu-gen. The study on the flocculation-properties of cohesive sediment suspensions[D]. Beijing: Tsinghua University, 2010. (in Chinese))
    [20] 章莉娟, 郑 忠. 胶体与界面化学[M]. 2版. 广州: 华南理工大学出版社, 2006. (ZHANG Li-juan, ZHENG Zhong. Colloid and interface chemistry[M]. 2nd ed. Guangzhou: South China University of Technology Press, 2006. (in Chinese))
    [21] 钱家欢, 殷宗泽. 土工原理与计算[M]. 2版. 北京: 中国水利水电出版社, 1996. (QIAN Jia-huan, YIN Zong-ze. Earthwork principle and calculation[M]. 2nd ed. Beijing: China Water and Power Press, 1996. (in Chinese))
  • 期刊类型引用(8)

    1. 朱传奇,谢广祥,王磊. 基于CT扫描的煤体裂隙演化与破坏状态表征. 中国矿业大学学报. 2024(01): 93-105 . 百度学术
    2. 刘树新,丁凯,张东杰,戴谦军,庄宇. 煤岩单轴压缩损伤的松弛特性研究. 煤炭技术. 2024(06): 6-11 . 百度学术
    3. 杨琪,于岩斌,程卫民,张鑫,郑磊,崔文亭,邢浩. 基于Micro-CT的受载煤岩裂隙孔隙时空演化规律. 岩石力学与工程学报. 2022(S1): 2626-2638 . 百度学术
    4. 袁海平,王文辉,叶晨旭. 含瓦斯煤岩体破坏接近度分析及三维重构研究. 煤矿安全. 2022(06): 63-68 . 百度学术
    5. 经来旺,彭绍驰,李学帅,李树文,严悦,经纬. 含单裂纹带圆孔板单轴破坏试验及仿真. 中国矿业. 2022(07): 174-182 . 百度学术
    6. 高祥,高亚楠. 基于光反射率突变的受力岩石裂纹提取方法. 工矿自动化. 2022(08): 76-84 . 百度学术
    7. 刘向御,柴肇云,刘绪,杨泽前,辛子朋. 循环荷载下粉砂岩孔裂隙扩展及卸载破坏特征. 煤炭学报. 2022(S1): 77-89 . 百度学术
    8. 俞祥杰,袁海平,熊礼军,陈晨,张羽. 基于三维重构技术的爆破活动对邻近巷道围岩损伤影响分析. 金属矿山. 2021(08): 46-51 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  336
  • HTML全文浏览量:  3
  • PDF下载量:  411
  • 被引次数: 18
出版历程
  • 收稿日期:  2013-07-04
  • 发布日期:  2014-03-19

目录

    /

    返回文章
    返回