• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高庙子膨润土膨胀力时效性试验研究

赖小玲, 叶为民, 刘毅, 陈宝, 王琼

赖小玲, 叶为民, 刘毅, 陈宝, 王琼. 高庙子膨润土膨胀力时效性试验研究[J]. 岩土工程学报, 2014, 36(3): 574-579. DOI: 10.11779/CJGE201403022
引用本文: 赖小玲, 叶为民, 刘毅, 陈宝, 王琼. 高庙子膨润土膨胀力时效性试验研究[J]. 岩土工程学报, 2014, 36(3): 574-579. DOI: 10.11779/CJGE201403022
LAI Xiao-ling, YE Wei-min, LIU Yi, CHEN Bao, WANG Qiong. Experimental investigation on ageing effects on swelling pressure of unsaturated GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 574-579. DOI: 10.11779/CJGE201403022
Citation: LAI Xiao-ling, YE Wei-min, LIU Yi, CHEN Bao, WANG Qiong. Experimental investigation on ageing effects on swelling pressure of unsaturated GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 574-579. DOI: 10.11779/CJGE201403022

高庙子膨润土膨胀力时效性试验研究  English Version

基金项目: 国家自然科学基金项目(41030748); 国防科工局资助项目(科工计[2011]1051号); 长江学者和创新团队发展计划项目(IRT1029)
详细信息
    作者简介:

    赖小玲(1984- ),女,湖北随州人,博士研究生,从事非饱和土研究工作。E-mail: xllai0284@163.com。

    通讯作者:

    叶为民

  • 中图分类号: TU443

Experimental investigation on ageing effects on swelling pressure of unsaturated GMZ01 bentonite

  • 摘要: 针对高庙子膨润土在不同含水率和不同干密度条件下膨胀力时效性进行了试验研究。首先采用静力压实法将3种不同含水率的高庙子膨润土粉末压实为两种不同密实状态的试样,随后在保持压实试样的体积和含水率不变的条件下,分别静置0,1,7,15,30和90 d,最后采用膨胀仪对完成静置试样的膨胀力进行量测;同时结合静置过程,完成了部分试样的扫描电镜(SEM)试验。试验结果表明:高庙子膨润土的膨胀力随静置时间的增长不断减小,且前期减小明显,后期逐渐趋于稳定;膨胀力的时效性与试样初始条件有关,试样含水率和干密度越大,膨胀力随静置时间的衰减越明显,即时效性越强。SEM试验结果表明,静置90 d后,高庙子膨润土内的蒙脱石发生了水化,集合体分解,颗粒相互黏结,微观孔隙结构趋于均质化,呈现点阵式的絮状结构;试样静置过程中不同微观结构层次之间的水分重分布导致的蒙脱石水化是高庙子膨润土静置过程中膨胀力降低的主要内在原因。
    Abstract: The ageing effects on the swelling properties of GMZ01 bentonite with different water contents and dry densities are investigated. Firstly, GMZ01 bentonite powder with three different water contents is statically compacted to samples with two dry densities. Then, the compacted samples with different initial conditions are kept for various periods of time (0, 1, 7, 15, 30 and 90 days) under constant volume and water content conditions. Afterwards, the aged samples are subjected to swelling pressure tests using the swelling apparatus. At the same time, the SEM tests are conducted on some samples after experiencing different ageing time. The test results show that the swelling pressure of GMZ01 bentonite decreases with the ageing time. The pressure decreases fast at the early days of ageing and then turns to stabilize after 30 days of ageing. The ageing effects on the swelling pressure of GMZ01 bentonite depend on the initial conditions of the samples. The higher the initial water content and dry density, the stronger the ageing effects. The SEM test results indicate that the smectites hydration occurs in the 90-day aged samples. Aggregates decompose, particles bond with each other and the void distribution seems to be more homogenous, leading to a matrix type macrostructure. The smectites hydration induced by water redistribution between different microstructure levels is the main mechanism for the decrease of the swelling pressure of GMZ01 bentonite.
  • [1] Swedish Nuclear Fuel, Waste Management CO. SKB91 final disposal of spent nuclear fuel. Importance of the bedrock for safety[R]. SKB Technical Report, 92-20, 1992.
    [2] Atomic Energy of Canada. Environmental Impact Statement on the Concept for Disposal of Canada's Nuclear Fuel Waste[R]. AECL-10711, COG-93-1, 1994.
    [3] JAPAN NUCLEAR CYCLE DEVELOPMENT INSTITUTE. H12: Project to establish the scientific and technical basis for HLW disposal in Japan[R]. Supporting Report 2, Repository Design and Engineering Technology, 1999.
    [4] KOMINE H, OGATA N. Experimental study on swelling characteristics of compacted bentonite[J]. Canadian Geotechnical Journal, 1994, 31(4): 478-490.
    [5] DELAGE P, HOWAT M D, CUI Y J. The relationship between suction and swelling properties in a heavily compacted unsaturated clay[J]. Engineering Geology, 1998, 50: 31-48.
    [6] TRIPATHY S, SRIDHARAN A, SCHANZ T. Swelling pressures of compacted bentonites from diffuse double layer theory[J]. Can Geotech J, 2004, 41: 437-450.
    [7] VILLAR M V, LLORET A. Influence of dry density and water content on the swelling of a compacted bentonite[J]. Applied Clay Science, 2008, 39(1/2): 38-49.
    [8] KOMINE H, YASUHARA K, MURAKAMI S. Swelling characteristics of bentonites in artificial seawater[J]. Canadian Geotechnical Journal, 2009, 46(2): 177-189.
    [9] YE W M, CHEN Y G, CHEN B, et al. Advances on the knowledge of the buffer/backfill properties of heavily-compacted GMZ bentonite[J]. Engineering Geology, 2010, 116: 12-20.
    [10] YE W M, WAN M, CHEN B, et al. Temperature effects on the swelling pressure and saturated hydraulic conductivity of the compacted GMZ01 bentonite[J]. Environmental Earth Sciences, 2013, 68: 281-288.
    [11] DELAGE P, MARCIAL D, CUI Y J, et al. Ageing effects in a compacted bentonite: a microstructure approach[J]. Géotechnique, 2006, 56: 291-304.
    [12] GEHLING W Y Y, ALONSO E E, GENS A. Stress-path testing of expansive compacted soils[C]// Proc 1st Int Conf on Unsaturated Soils. Paris, 1995, 1: 77-82.
    [13] BARBER E S. Discussion of ‘Engineering properties of expansive clays’ by W. G. Holtz and H. J. Gibbs[J]. Trans Div ASCE, 1956, 121: 669-673.
    [14] GIZIENSKI S F, LEE L J. Comparison of laboratory swell tests to small scale field tests; engineering effects of moisture changes in soils[C]// Proceedings of the International Research and Engineering Conference on Expansive Soils. College Station, 1965: 108-119.
    [15] NALEZNY C L, LI M C. Effects of soil moisture and thixotropic hardening on the swell behaviour of compacted expansive soils[M]. Highway Res Rec Washington D C: Highway Research Board, 1967: 209.
    [16] KASSIFF G, BAKER R. Ageing effects on swell potential of compacted clay[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1971, 97(3): 529-540.
    [17] DAY R W. Swell-shrink behaviour of expansive compacted clay[J]. J Geotech Engng, ASCE, 1994, 120(3): 618-623.
    [18] SUBBA RAO K S, TRIPATHY S. Effect of aging on swelling and swell-shrink behaviour of a compacted expansive soil[J]. ASTM Geotech Test J, 2003, 26: 36-46.
    [19] 叶为民, 白 云, 金 麒, 等. 上海软土土水特征的室内试验研究. 岩土工程学报, 2006, 28(2): 260-263. (YE Wei-min, BAI Yun, JIN Qi, et al. Lab experimental study on soil-water characteristics of Shanghai soft clay[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 260-263. (in Chinese))
  • 期刊类型引用(8)

    1. 王子业,谭勇,龙莹莹. 不同渗漏位置下管道渗蚀物理模型试验及细观机理研究. 浙江大学学报(工学版). 2024(06): 1209-1220 . 百度学术
    2. 姬建,闫亚东,王涛,袁雪阳. 埋地管线破损-漏土诱发地面塌陷过程的流固耦合离散元模拟. 河海大学学报(自然科学版). 2024(04): 35-46 . 百度学术
    3. 张治国,程志翔,张孟喜,马少坤,陈杰,吴钟腾,李云正. 盾构隧道接缝漏损诱发水土流失模型试验及离散元分析. 中国公路学报. 2023(01): 162-175 . 百度学术
    4. 张玉,梁昊,林亮,周游,赵青松. 不同沉降方式下埋地管道力学响应试验研究. 岩土力学. 2023(06): 1645-1656 . 百度学术
    5. 潘泓,蔡磊,罗俊兴,曹洪,骆冠勇. 上细下粗富水复合砂层渗透破坏机制试验及初步工程应用研究. 岩石力学与工程学报. 2023(07): 1778-1788 . 百度学术
    6. 李林海,郭文娟,丁强,王光辉,高金良,关鹏,隋景林,张洪英,刁美玲. 基于高空间分辨率BOTDA的土体沉降监测研究. 哈尔滨商业大学学报(自然科学版). 2023(06): 702-708 . 百度学术
    7. 张治国,程志翔,陈杰,吴钟腾,李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验. 隧道与地下工程灾害防治. 2022(03): 77-91 . 百度学术
    8. 梁志滔. 基于沉降速率划分的施工地表沉降预测方法. 测绘技术装备. 2021(02): 15-18 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  409
  • HTML全文浏览量:  5
  • PDF下载量:  866
  • 被引次数: 16
出版历程
  • 收稿日期:  2013-08-19
  • 发布日期:  2014-03-19

目录

    /

    返回文章
    返回