• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

高速铁路路基沉降高聚物注浆修复后动力性能及长期耐久性的试验研究

边学成, 程翀, 王复明, 蒋建群, 陈云敏

边学成, 程翀, 王复明, 蒋建群, 陈云敏. 高速铁路路基沉降高聚物注浆修复后动力性能及长期耐久性的试验研究[J]. 岩土工程学报, 2014, 36(3): 562-568. DOI: 10.11779/CJGE201403020
引用本文: 边学成, 程翀, 王复明, 蒋建群, 陈云敏. 高速铁路路基沉降高聚物注浆修复后动力性能及长期耐久性的试验研究[J]. 岩土工程学报, 2014, 36(3): 562-568. DOI: 10.11779/CJGE201403020
BIAN Xue-cheng, CHENG Chong, WANG Fu-ming, JIANG Jian-qun, CHEN Yun-min. Experimental study on dynamic performance and long-term durability of high-speed railway subgrade rehabilitated by polymer injection technology[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 562-568. DOI: 10.11779/CJGE201403020
Citation: BIAN Xue-cheng, CHENG Chong, WANG Fu-ming, JIANG Jian-qun, CHEN Yun-min. Experimental study on dynamic performance and long-term durability of high-speed railway subgrade rehabilitated by polymer injection technology[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 562-568. DOI: 10.11779/CJGE201403020

高速铁路路基沉降高聚物注浆修复后动力性能及长期耐久性的试验研究  English Version

基金项目: 国家自然科学基金项目(51178418,51222803)
详细信息
    作者简介:

    边学成(1976- ),男,浙江诸暨人,副教授,博士生导师,主要从事动力荷载作用下交通基础设施的动力特性和长期服役性能等方面的研究。E-mail: bianxc@zju.edu.cn。

    通讯作者:

    蒋建群

  • 中图分类号: TU47

Experimental study on dynamic performance and long-term durability of high-speed railway subgrade rehabilitated by polymer injection technology

  • 摘要: 高速铁路路基的过大沉降影响轨道结构耐久性和列车运行安全,有必要及时通过抬升路基水平恢复轨道线路的垂向平整性。尝试通过在路基表层和轨道混凝土底座之间进行非水反应高分子聚合物填充注浆的方法实现轨道结构的整体均匀抬升。通过大型物理模型试验测试分析了抬升后轨道-路基的整体动力学性能及长期耐久性。通过定点循环激振试验对比分析了路基抬升前后的轨道整体刚度的变化规律,发现抬升后整体刚度相比抬升前略有减小,但对轨道-路基体系自振频率的影响有限;模拟列车运行的大周次循环加载测试了抬升后路基的动力累积沉降和动刚度变化过程,结果表明抬升后路基在列车长期荷载作用下具有较好的动力稳定性。
    Abstract: The excessive settlement of high-speed railway subgrade will adversely affect the durability of railway structures and the safe operation of trains, therefore the uplift of track structures will be demanded to restore the vertical alignments of the railway. An engineering attempt with injection of polymer materials between the roadbed surface and the concrete base of the slab track is adopted to uplift the track structures uniformly. Large-scale physical model tests are performed to study the dynamic performance and long-term durability of the uplifted track-subgrade system. The change of stiffness of the track-subgrade system after the uplift process is investigated based on the fixed-point cyclic loading tests. The test results indicate that the stiffness of the track structures is slightly reduced after the uplift process, but the change of the natural vibration frequency of the track-subgrade system is very limited. The investigation on cumulative settlement and dynamic stiffness of the uplifted track structures under very large cycles of simulated train moving loads shows that the uplifted track has satisfactory dynamic stability.
  • [1] BIAN X C, JIANG H G, CHEN Y M. Accumulative deformation in railway track induced by high-speed traffic loading of the trains[J]. Earthquake Engineering and Engineering Vibration, 2010, 9(3): 319-326.
    [2] 周 萌, 宫全美, 王炳龙, 等. 无碴轨道路基基床动力特性的研究[J]. 铁道标准设计, 2010(10): 1-4. (ZHOU Meng, GONG Quan-mei, WANG Bing-long, et al. The influence of differential settlement value for the dynamic slab track response[J]. Railway Stadard Design, 2010(10): 1-4. (in Chinese))
    [3] 刘茹冰, 张士杰. 路基沉降不均对板式轨道受力的影响分析[J]. 路基工程, 2009(1): 142-143. (LIU Ru-bing, ZHANG Shi-jie. The impact of uneven settlement of embankment to slab track[J]. Subgrade Engineering, 2009(1): 142-143. (in Chinese))
    [4] 陈 鹏, 高 亮, 马鸣楠. 高速铁路路基沉降限值及其对无砟轨道受力的影响[J]. 工程建设与设计, 2008(5): 63-66. (CHEN Peng, GAO Liang, MA Ming-nan. Limited value of subgrade settlement and its influence on mechanical characteristics of ballastless track in high-speed railway[J]. Traffic Engineering Design, 2008(5): 63-66.(in Chinese))
    [5] 宋欢平, 边学成, 蒋建群, 等. 高速铁路路基沉降与列车运行速度关联性的研究[J]. 振动与冲击, 2012, 31(10): 134-140. (SONG Huan-ping, BIAN Xue-cheng, JIANG Jian-qun, et al. Correlation between subgrade settlement of high-speed railroad and train operation speed[J]. Journal of Vibration and Shock. 2012, 31(10): 134-140. (in Chinese))
    [6] BEZINA Y, FARRINGTON D, PENNY C, et al. The dynamic response of slab track constructions and their benefit with respect to conventional ballasted track[J]. Vehicle System Dynamics, 2010, 48: 175-193.
    [7] 谢颖武. 注浆加固法在既有铁路路基施工中的应用[J]. 科技资讯, 2008(14): 4. (XIE Ying-wu. Grouting method in the railway embankment construction[J]. Information Technology, 2008(14): 4. (in Chinese))
    [8] 吕续臣, 于立俊. 既有铁路路基注浆加固技术[J]. 铁道建筑, 2006(4): 39-41. (LÜ Xu-chen, YU Li-jun. Railway embankment grouting technology[J]. Railway Engineering, 2006(4): 39-41. (in Chinese))
    [9] 李宗典, 刘世益, 尹立杰. 铁路路基道碴囊及路基空洞注浆加固治理[J]. 路基工程, 2007(6): 179-180. (LI Zong-dian, LIU Shi-yi, YIN Li-jie. Railway embankment ballast and subgrade empty grouting governance[J]. Subgrade Engineering, 2007(6): 179-180. (in Chinese))
    [10] 石明生, 马小跃, 王复明. 高聚物注浆技术在水里混凝土道路维修中的应用[J]. 河南科学, 2010(1): 74-77. (SHI Ming-sheng, MA Xiao-yue, WANG Fu-ming. Application of polyurethane injecting method in cement concrete pavement road[J]. Henan Science, 2010(1): 74-77. (in Chinese))
    [11] 刘 勇. 聚氨酯高聚物材料及其混凝土常用性能试验研究[D]. 郑州: 郑州大学, 2009. (LIU Yong. The analysis of Polyurethane polymer material used in concrete[D]. Zhengzhou: Zhengzhou University, 2009. (in Chinese))
    [12] 边学成, 蒋红光, 金皖锋, 等. 板式轨道-路基相互作用及荷载传递规律的物理模型试验研究[J]. 岩土工程学报, 2012, 34(8): 1488-1495. (BIAN Xue-cheng, JIANG Hong-guang, JIN Wan-feng, et al. Full-scale model tests on slab track-subgrade interaction and load transfer in track system[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1488-1495. (in Chinese))
    [13] TB 10621—2009 高速铁路设计规范[S]. 2009. (TB 10621—2009 High-speed railway design specifications[S]. 2009. (in Chinese))
    [14] 刘志远. 高聚物注浆材料工程特性的试验研究[D]. 郑州:郑州大学, 2007. (LIU Zhi-yuan. The engineering analysis of polymer grouting material experimental study[D]. Zhengzhou: Zhengzhou University, 2007. (in Chinese))
    [15] 徐建国, 王复明, 钟燕辉, 等. 静动力荷载下土石坝高聚物防渗墙受力特性分析[J]. 岩土工程学报, 2012, 34(9): 1699-1704. (XU Jian-guo, WANG Fu-ming, ZHONG Yan-hui, et al. Stress analysis of polymer dishrag wall for earth-rock under static and dynamic loads[J]. Chinese Journal of Geotechnical Engineering. 2012, 34(9): 1699-1704. (in Chinese))
  • 期刊类型引用(14)

    1. 洪开荣,刘永胜,潘岳. 钻爆法山岭隧道修建技术发展与展望. 现代隧道技术. 2024(02): 67-79 . 百度学术
    2. 赵建利,郝雪航,余洋,李鹏程,高华民. 苏基克纳里水电站调压竖井无锚支护研究. 河北水利电力学院学报. 2024(03): 38-44 . 百度学术
    3. 侯艳娟,张顶立,李然,陈旭,齐伟伟. 深埋三连拱隧道围岩压力计算方法. 力学学报. 2024(11): 3213-3226 . 百度学术
    4. 丁祥,刘勇,任玉鹏,韩智铭,马凯蒙. 以初期支护为主要承载结构的衬砌参数优化研究. 公路. 2024(12): 487-492 . 百度学术
    5. 张顶立,孙振宇,陶伟明. 隧道围岩大变形灾害特点与主动控制方法. 铁道标准设计. 2023(01): 1-9 . 百度学术
    6. 陈文博,张顶立,孙振宇,陈旭,孟令赞. 铁路隧道概率极限状态设计分项系数标定与讨论. 铁道标准设计. 2023(01): 17-24 . 百度学术
    7. 姚志雄,刘梦飞,吴波,刘耀星,陈希茂,郑国文,罗芷祎. 基于承载特性的群洞稳定性及初期支护优化研究. 现代隧道技术. 2023(01): 119-129 . 百度学术
    8. 刘鹤冰. 基于投资控制的高速公路PPP项目投资人对设计人的管理研究. 铁道建筑技术. 2023(09): 199-202 . 百度学术
    9. 梁鹏,高永涛,周喻,邓代强. 隧道初支合理支护时机确定方法及其工程应用. 工程科学学报. 2022(02): 265-276 . 百度学术
    10. 刘鹤冰. PPP模式下高速公路项目设计优化全过程管理探究. 铁道建筑技术. 2022(09): 131-135 . 百度学术
    11. 王嘉琛,张顶立,孙振宇,方黄城,刘昌. 水平互层围岩隧道破坏机理及其范围预测模型. 力学学报. 2022(10): 2835-2849 . 百度学术
    12. 刘耀儒,侯少康,程立,黄跃群. 水利工程智能建造进展及关键技术. 水利水电技术(中英文). 2022(10): 1-20 . 百度学术
    13. 彭磊. 公路小净距隧道后行洞支护结构位移及受力特性分析. 产业科技创新. 2021(01): 105-107 . 百度学术
    14. 焦战,肖洪天. 基于博弈赋权和综合灰色关联的围岩支护评价. 科学技术与工程. 2021(34): 14769-14774 . 百度学术

    其他类型引用(26)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 40
出版历程
  • 收稿日期:  2013-04-21
  • 发布日期:  2014-03-19

目录

    /

    返回文章
    返回