• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

淋滤条件下水泥固化铅污染高岭土的强度及 微观特性的研究

刘兆鹏, 杜延军, 刘松玉, 蒋宁俊, 朱晶晶

刘兆鹏, 杜延军, 刘松玉, 蒋宁俊, 朱晶晶. 淋滤条件下水泥固化铅污染高岭土的强度及 微观特性的研究[J]. 岩土工程学报, 2014, 36(3): 547-554. DOI: 10.11779/CJGE201403018
引用本文: 刘兆鹏, 杜延军, 刘松玉, 蒋宁俊, 朱晶晶. 淋滤条件下水泥固化铅污染高岭土的强度及 微观特性的研究[J]. 岩土工程学报, 2014, 36(3): 547-554. DOI: 10.11779/CJGE201403018
LIU Zhao-peng, DU Yan-jun, LIU Song-yu, JIANG Ning-jun, ZHU Jing-jing. Strength and microstructural characteristics of cement solidified lead-contaminated kaolin exposed to leaching circumstances[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 547-554. DOI: 10.11779/CJGE201403018
Citation: LIU Zhao-peng, DU Yan-jun, LIU Song-yu, JIANG Ning-jun, ZHU Jing-jing. Strength and microstructural characteristics of cement solidified lead-contaminated kaolin exposed to leaching circumstances[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 547-554. DOI: 10.11779/CJGE201403018

淋滤条件下水泥固化铅污染高岭土的强度及 微观特性的研究  English Version

基金项目: 国家自然科学基金项目(51278100,41330641); 江苏省自然科学基金项目(BK2012022,BK2010060); 国家863计划项目(2013AA06A206)
详细信息
    作者简介:

    刘兆鹏(1989- ),男,硕士研究生,主要从事环境岩土工程研究。E-mail: liuzhp90@163.com。

    通讯作者:

    杜延军

  • 中图分类号: TU47

Strength and microstructural characteristics of cement solidified lead-contaminated kaolin exposed to leaching circumstances

  • 摘要: 通过半动态淋滤试验,研究淋滤液初始pH=2,4,7时水泥固化铅污染土的强度、微观和钙溶出特性。无侧限抗压强度试验及钙溶出率(CFRCa)结果表明:半动态淋滤试验使试样无侧限抗压强度(qu)较标准养护39 d试样降低了1%~42%;淋滤液初始pH=2时,CFRCa为pH=4或7时的2~7倍,而pH=4与7时qu及CFRCa差别均不明显;水泥掺量由12%提高到18%时,qu增大了35%~98%,CFRCa降低了40%~58%;固化铅污染土较固化未污染土,其qu小50%~68%,而CFRCa大29%~175%。试样无侧限抗压强度比qr(淋滤后试样qu/标准养护39 d试样qu)与CFRCa在双对数坐标下呈现良好线性关系:随CFRCa增大,qr减小,说明钙的溶出是控制固化污染土/未污染土强度的主要因素之一。X射线衍射、扫描电镜及压汞试验结果表明,高浓度铅抑制水泥水化/火山灰反应,固化铅污染土与固化未污染土孔隙分布分别呈单峰和双峰特征,固化铅污染土中铅形成Si-O-Pb结合体、PbAl2O4、CaPbO3等沉淀是铅固化稳定化的主要机理之一。
    Abstract: The strength and microstructural characteristics of cement stabilized/solidified lead-contaminated kaolin clay are investigated. The leaching of calcium (Ca) is studied under the targeted leachant pH of 2, 4, and 7 via a series of semi-dynamic leaching tests. The results reveal that the unconfined compressive strength (qu) of the stabilized/solidified soils experiencing the semi-dynamic leaching tests is 1% to 42% lower than that of the soils cured for 39 days under standard conditions (SC). The cumulative leaching fraction of Ca (CFRCa) at the leachant pH of 2 is 2 to 7 times greater than that at the leachant pH of 4 or 7. The difference in qu or CFRCa of the soils experiencing the semi-dynamic leaching tests at the lechant pH of 4 and 7 is marginal. When the cement content increases from 12% to 18%, qu increases by 35% to 98%; whereas CFRCa decreases by 40% to 58%. Furthermore, qu of the stabilized/solidified lead-contaminated soils is 50% to 68% lower, and CFRCa is 29% to 175% higher than that of the stabilized/solidified clean soils. An empirical equation is proposed for predicting the loss of unconfined compressive strength (i.e., ratio of qu obtained after leaching tests to that obtained at curing time of 39 days under standard conditions) using CFRCa. It is shown that the proposed method has high accuracy. The results of X-ray diffraction, scanning electron microscope, and mercury intrusion porosimetry analysis show that the relatively high concentration of Pb has remarkably retarded hydration/pozzolanic reactions in the stabilized/solidified lead-contaminated soils. Therefore, the strength development, leaching of Ca, and microstructural characteristics of the stabilized/solidified lead-contaminated soils differ from those of the stabilized/solidified clean soils in a notable manner.
  • [1] HEKAL E E, HEGAZI W S, KISHAR E A, et al. Solidification/stabilization of Ni(II) by various cement pastes[J]. Construction and Building Materials, 2011, 25(1): 109-114.
    [2] ALPASLAN B, YUKSELEN M A. Remediation of lead contaminated soils by stabilization/solidification[J]. Water, Air, and Soil Pollution, 2002, 133(1/2/3/4): 253-263.
    [3] 杜延军, 金 飞, 刘松玉, 等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学, 2011, 32(1): 116-124. (DU Yan-jun, JIN Fei, LIU Song-yu, et al. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands [J]. Rock and Soil Mechanics, 2011, 32(1): 116-124. (in Chinese))
    [4] DU Y J, JIANG N J, SHEN S L, et al. Experimental investigation of influence of acid rain on leaching and hydraulic characteristics of cement-based solidified/stabilized lead contaminated clay[J]. Journal of Hazardous Materials, 2012, 225/226: 195-201.
    [5] MOON D H, DERMATAS D. An evaluation of lead leachability from stabilized/solidified soils under modified semi-dynamic leaching conditions[J]. Engineering Geology, 2006, 85(1/2): 67-74.
    [6] MOON D H, DERMATAS D, GRUBB D G. Release of arsenic (As) and lead (Pb) from quicklime-sulfate stabilized/solidified soils under diffusion-controlled conditions [J]. Environmental Monitoring and Assessment, 2010, 169(1/2/3/4): 259-265.
    [7] MALVIYA R, CHAUDHRY R. Leaching behavior and immobilization of heavy metals in solidified/stabilized products[J]. Journal of Hazardous Materials, 2006, B137(1): 207-217.
    [8] SONG F Y, GU L, ZHU N W, et al. Leaching behavior of heavy metals from sewage sludge solidified by cement-based binders[J]. Chemosphere, 2013, 92(4): 344-350.
    [9] EPA U S. Solidification/stabilization use at superfund sites[R]. Washington D C: Office of Solid Waste and Emergency Response, Technology Innovation Office, 2000.
    [10] 陈 蕾, 刘松玉, 杜延军, 等. 水泥固化重金属铅污染土的强度特性研究[J]. 岩土工程学报, 2010, 32(12): 1898-1903. (CHEN Lei, LIU Song-yu, DU Yan-jun, et al. Unconfined compressive strength properties of cement solidified/stabilized lead-contaminated soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1898-1903. (in Chinese))
    [11] LEE D, WAITE T D, SWARBRICK G, et al. Comparison of solidification/stabilization effects of calcite between Australian and South Korean cements[J]. Cement and Concrete Research, 2005, 35(11): 2143-2157.
    [12] MOULIN I, STONE W E E, SANZ J, et al. Lead and zinc retention during hydration of tri-calcium silicate: a study by sorption isotherms and 29Si nuclear magnetic resonance spectroscopy[J]. Langmuir, 1999, 15(8): 2829-2835.
    [13] 杜延军, 蒋宁俊, 王 乐, 等. 水泥固化锌污染高岭土强度及微观特性研究[J]. 岩土工程学报, 2012, 34(11): 2114-2120. (DU Yan-jun, JIANG Ning-jun, WANG Le, et al. Strength and microstructure characteristics of cement-based solidified/stabilized zinc-contaminated kaolin[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2114-2120. (in Chinese))
    [14] 刘兆鹏, 杜延军, 蒋宁俊, 等. 基于半动态淋滤试验的水泥固化铅污染黏土溶出特性研究[J]. 岩土工程学报, 2013, 35(12): 2212-2218. (LIU Zhao-peng, DU Yan-jun, JIANG Ning-jun, et al. Leaching properties of cement solidified lead-contaminated clay via semi-dynamic leaching testing[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(12): 2212-2218. (in Chinese))
    [15] CUISINIER O, BORGNE T L, DENEELE D, et al. Quantification of the effects of nitrates, phosphates and chlorides on soil stabilization[J]. Engineering Geology, 2011, 117(3/4): 229-235.
    [16] 廖晓勇, 崇忠义, 阎秀兰, 等. 城市工业污染场地:中国环境修复领域的新课题[J]. 环境科学, 2011, 32(2): 784-794. (LIAO Xiao-yong, CHONG Zhong-yi, YAN Xiu-lan, et al. Urban industrial contaminated sites: a new issue in the field of environmental remediation in China[J]. Environmental Science, 2011, 32(2): 784-794. (in Chinese))
    [17] ASTM C1308-08 Standard method for accelerated leach test for diffusive release from solidified waste and a computer program to model diffusive, fractional leaching from cylindrical waste forms[S]. 2009.
    [18] SW846 EPA Method 3051A Microwave assisted acid digestion of sediments, sludges, soils, and oils[S]. 2007.
    [19] 刘松玉. 公路地基处理[M]. 南京: 东南大学出版社, 2009. (LIU Song-yu. Ground improvement in highway engineering[M]. Nanjing: Southeast University Press, 2009. (in Chinese))
    [20] 彭容秋. 铅冶金[M]. 长沙: 中南大学出版社, 2004. (PENG Rong-qiu. Lead metallurgy[M]. Changsha: Central South University Press, 2004. (in Chinese))
    [21] MOON D H, DERMATAS D. An evaluation of lead leachability from stabilized/solidified soils under modified semi-dynamic leaching conditions[J]. Engineering Geology, 2006, 85(1/2): 67-74.
    [22] GRUBB D G, MOON D H, REILLY T, et al. Stabilization/solidification (S/S) of Pb and W contaminated soils using Type I II Portland cement, silica fume cement and cement kiln dust[J]. Global NEST Journal, 2009, 11(3): 267-282.
    [23] BENSTED J, BARNES P. Structure and performance of cements[M]. 2nd ed. U K: Taylor & Francis, 2002.
    [24] LI X, ZHANG L M. Characterization of dual-structure pore-size distribution of soil[J]. Canadian Geotechnical Journal, 2009, 46(2): 129-141.
    [25] 李 旭, 张利民, 敖国栋. 失水过程孔隙结构、孔隙比、含水率变化规律[J]. 岩土力学, 2011, 32(增刊1): 100-105. (LI Xu, ZHANG Li-min, AO Guo-dong. Variations of pore structure, void ratio, and water content in soil drying process[J]. Rock and Soil Mechanics, 2011, 32(S1): 100-105. (in Chinese))
    [26] LI X D, POON C S, SUN H, et al. Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials[J]. Journal of Hazardous Materials, 2001, 82(3): 215-230.
    [27] KNOP A, VANGULCK J, HEINECK K S, et al. Compacted artificially cemented soil-acid leachate contaminant interactions: Breakthrough curves and transport parameters[J]. Journal of Hazardous Materials, 2008, 155(1/2): 269-276.
  • 期刊类型引用(16)

    1. 加瑞,楚振兴. 地质聚合物加固软土的研究现状与进展. 硅酸盐通报. 2025(02): 490-500 . 百度学术
    2. 马丽媛,李滢,陈曦. 再生微粉和矿物掺合料对水泥浆体微观结构的影响研究. 青海大学学报. 2024(01): 24-31 . 百度学术
    3. 谷雷雷,张梅,邓先军,吉久发,于剑波,王盛年. 水泥复合偏高岭土稳定粉砂土力学特性试验研究. 地质与勘探. 2024(01): 148-155 . 百度学术
    4. 王志良,陈玉龙,申林方,施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制. 材料导报. 2024(08): 141-147 . 百度学术
    5. 黎宇,胡明鉴,郑思维,王志兵. 电石渣-矿渣固化膨胀土强度及微观机制研究. 岩土力学. 2024(S1): 461-470 . 百度学术
    6. 胡家宇,徐菲,钱文勋,肖怀前,葛津宇,李嘉明. 涂覆时间对聚合物水泥基钢筋涂层粘接性能的影响机理. 材料导报. 2024(17): 127-130 . 百度学术
    7. 韩瑞凯,陈宇鑫,张健,李召峰,王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响. 材料导报. 2024(22): 27-34 . 百度学术
    8. 何俊,管家贤,吕晓龙,张驰. 纳米硅粉改良碱渣-矿渣固化淤泥的抗硫酸镁侵蚀性能. 硅酸盐通报. 2023(04): 1344-1352 . 百度学术
    9. 胡鑫,孙强,晏长根,赵春虎,王少飞. 陕北烧变岩水-岩作用的劣化特性. 煤田地质与勘探. 2023(04): 76-84 . 百度学术
    10. 何俊,管家贤,龙思昊. MgSO_4硅粉改良固化淤泥的渗透性能及孔隙特征. 水利水电技术(中英文). 2023(07): 218-226 . 百度学术
    11. 李丽华,韩琦培,杨星,肖衡林,李文涛,黄少平. 稻壳灰-水泥固化淤泥土力学特性及微观机理研究. 土木工程学报. 2023(12): 166-176 . 百度学术
    12. 王伟,刘静静,李娜,马露. 纳米SiO_2改性滨海水泥土的短龄期力学性能与微观机制. 复合材料学报. 2022(04): 1701-1714 . 百度学术
    13. 黄毫春,昌郑,吴春鹏,姚嘉敏,熊勃,刘飞禹. 纤维长度与掺量对加筋水泥土直剪特性的影响研究. 施工技术(中英文). 2022(21): 54-59 . 百度学术
    14. 王盛年,高新群,吴志坚,惠洪雷,张兴瑾. 水泥偏高岭土复合稳定粉砂土渗透特性试验研究. 岩土力学. 2022(11): 3003-3014 . 百度学术
    15. 李晓丽,赵晓泽,申向东. 碱激发对砒砂岩地聚物水泥复合土强度及微观结构的影响机理. 农业工程学报. 2021(12): 73-81 . 百度学术
    16. 徐长文,阮波. 冻融循环下纤维水泥改良风积沙NMR试验研究. 铁道科学与工程学报. 2021(09): 2289-2298 . 百度学术

    其他类型引用(19)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 35
出版历程
  • 收稿日期:  2013-07-04
  • 发布日期:  2014-03-19

目录

    /

    返回文章
    返回