• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

考虑自相关函数影响的边坡可靠度分析

蒋水华, 李典庆, 周创兵, 方国光

蒋水华, 李典庆, 周创兵, 方国光. 考虑自相关函数影响的边坡可靠度分析[J]. 岩土工程学报, 2014, 36(3): 508-518. DOI: 10.11779/CJGE201403014
引用本文: 蒋水华, 李典庆, 周创兵, 方国光. 考虑自相关函数影响的边坡可靠度分析[J]. 岩土工程学报, 2014, 36(3): 508-518. DOI: 10.11779/CJGE201403014
JIANG Shui-hua, LI Dian-qing, ZHOU Chuang-bing, PHOON Kok-kwang. Slope reliability analysis considering effect of autocorrelation functions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 508-518. DOI: 10.11779/CJGE201403014
Citation: JIANG Shui-hua, LI Dian-qing, ZHOU Chuang-bing, PHOON Kok-kwang. Slope reliability analysis considering effect of autocorrelation functions[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 508-518. DOI: 10.11779/CJGE201403014

考虑自相关函数影响的边坡可靠度分析  English Version

基金项目: 国家杰出青年科学基金项目(51225903); 国家重点基础研究发展计划(973计划)项目(2011CB013506); 国家自然科学基金项目(51329901)
详细信息
    作者简介:

    蒋水华(1987- ),男,江西九江人,博士研究生,主要从事岩土工程可靠度和风险控制方面的研究。E-mail: jiangshuihua-2008@163.com。

    通讯作者:

    李典庆

  • 中图分类号: TU47

Slope reliability analysis considering effect of autocorrelation functions

  • 摘要: 自相关函数是表征岩土体参数空间变异性的重要参数,不同自相关函数对边坡可靠度影响程度还缺乏定量地评价。给出了基于乔列斯基分解中点法的相关非高斯随机场模拟步骤,统计了抗剪强度参数自相关长度的取值范围。在考虑土体抗剪强度参数间互相关性、变异性、黏聚力和内摩擦角取不同波动范围的基础上,以摩擦/黏性土坡可靠度问题为例研究了常用的5种自相关函数对边坡可靠度的影响。结果表明:基于乔列斯基分解中点法的相关非高斯随机场模拟计算过程简便,容易编程实现,可模拟任意几何形状的随机场分布,具有较高的计算精度和效率。在参数负相关性和垂直波动范围较大、变异性较小时,不同自相关函数得到的边坡可靠度结果差别较明显。当黏聚力和内摩擦角的垂直波动范围不同时,不同自相关函数对边坡可靠度的影响非常显著。高斯型、二阶自回归型和指数余弦型自相关函数产生的随机场分布光滑度和连续性较好,较为符合实际情况,它们能够有效地描述土体参数的空间自相关性。由这三种自相关函数计算得到的边坡可靠度结果偏小。基于指数型自相关函数的随机场分布波动性较大,连续性较差,计算的边坡可靠度偏大。
    Abstract: The autocorrelation function (ACF) is a prerequisite for properly characterizing the spatial variability of soil properties. The effect of different types of ACFs on the slope reliability has not been qualitatively evaluated. A procedure for simulating correlated non-Gaussian random fields based on the Cholesky decomposition technique with midpoint discretization is proposed. The typical ranges of autocorrelation length of shear strength parameters of soils are summarized. An example of reliability analysis of frictional/cohesive soil slope is then presented to investigate the effect of five common types of ACFs for the geostatistical analysis on the slope reliability. The influence of cross-correlation, variability of soil properties and different scales of fluctuation of the cohesion and friction angle are taken into account, respectively. The results indicate that the proposed method is computationally simple and easily implementable for simulating the correlated non-Gaussian random fields with any geometry, and it can effectively evaluate the slope reliability with a sufficient accuracy. The differences in the slope reliability underlying five types of ACFs are more obvious when the negative cross-correlation and vertical scales of fluctuation become stronger, and the variability of soil properties becomes smaller, respectively. These differences become very significant when the cohesion and friction angle take different vertical scales of fluctuation. Additionally, the target random fields are very smooth and the slope reliability is underestimated underlying the square exponential, second-order autoregressive or cosine exponential ACFs, and they may account for the spatially correlated soil properties more realistically. In contrast, the target random field is a roughly varying field and the slope reliability is overestimated underlying the exponential ACF.
  • [1] LI K S, LUMB P. Probabilistic design of slopes[J]. Canadian Geotechnical Journal, 1987, 24(4): 520-535.
    [2] 程 强, 罗书学, 高新强. 相关函数法计算相关距离的分析探讨[J]. 岩土力学, 2000, 21(3): 281-283. (CHENG Qiang, LUO Shu-xue, GAO Xin-qiang. Analysis and discuss of calculation of scale of fluctuation using correlation function method[J]. Chinese Jounal of Rock and Soil Mechanics, 2000, 21(3): 281-283. (in Chinese))
    [3] 徐 斌, 王大通, 高大钊. 用相关函数法求静探曲线相关距离的讨论[J]. 岩土力学, 1998, 19(1): 55-58. (XU Bin, WANG Da-tong, GAO Da-zhao. Discussion on determining relative distance of static cone penetration curves by relative function method[J]. Chinese Journal of Rock and Soil Mechanics, 1998, 19(1): 55-58. (in Chinese))
    [4] KASAMA K, WHITTLE A J, ZEN K. Effect of spatial variability on the bearing capacity of cement-treated ground[J]. Soils and Foundations, 2012, 52(4): 600-619.
    [5] YANG L F, YU B, JU J W. System reliability analysis of spatial variance frames based on random field and stochastic elastic modulus reduction method[J]. Acta Mechanica, 2012, 223(1): 109-124.
    [6] 唐小松, 李典庆, 周创兵, 等. 不完备概率信息条件下边坡可靠度分析方法[J]. 岩土工程学报, 2013, 35(6): 1027-1034. (TANG Xiao-song, LI Dian-qing, ZHOU Chuang-bing, et al. Reliability analysis of slopes with incomplete probability information[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 1027-1034. (in Chinese))
    [7] 李典庆, 蒋水华, 周创兵, 等. 考虑参数空间变异性的边坡可靠度分析非侵入式随机有限元法[J]. 岩土工程学报, 2013, 35(8): 1413-1422. (LI Dian-qing, JIANG Shui-hua, ZHOU Chuang-bing, et al. Reliability analysis of slopes considering spatial variability of soil parameters using non-intrusive stochastic finite element method[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1413-1422. (in Chinese))
    [8] CHO S E, PARK H C. Effect of spatial variability of cross correlated soil properties on bearing capacity of strip footing[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(1): 1-26.
    [9] CHO S E. Probabilistic assessment of slope stability that considers the spatial variability of soil properties[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2010, 136(7): 975-984.
    [10] AL-BITTAR T, SOUBRA A H. Bearing capacity of strip footings on spatially random soils using sparse polynomial chaos expansion[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(13): 2039-2060.
    [11] 李典庆, 祁小辉, 周创兵, 等. 考虑参数空间变异性的无限长边坡可靠度分析[J]. 岩土工程学报, 2013, 35(10): 1799-1806. (LI Dian-qing, QI Xiao-hui, ZHOU Chuang- bing, et al. Reliability analysis of infinite soil slopes considering spatial variability of soil parameters[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1799-1806. (in Chinese))
    [12] KASAMA K, WHITTLE A J. Bearing capacity of spatially random cohesive soil using numerical limit analysis[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2011, 137(11): 989-996.
    [13] HALDAR S, SIVAKUMAR BABU G L. Effect of soil spatial variability on the response of laterally loaded pile in undrained clay[J]. Computers and Geotechnics, 2008, 35(4): 537-547.
    [14] SRIVASTAVA A, SIVAKUMAR BABU G L, HALDAR S. Influence of spatial variability of permeability property on steady state seepage flow and slope stability analysis[J]. Engineering Geology, 2010, 110(3/4): 93-101.
    [15] SUCHOMEL R, MAŠIN D. Comparison of different probabilistic methods for predicting stability of a slope in spatially variable c-φ soil[J]. Computers and Geotechnics, 2010, 37(1/2): 132-140.
    [16] WU S, OU C, CHING J, JUANG C H. Reliability-based design for basal heave stability of deep excavations in spatially varying soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2012, 138(5): 594-603.
    [17] SALGADO R, KIM D. Reliability analysis and load and resistance factor design of slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 140(1): 57-73.
    [18] PHOON K K, KULHAWY F H. Characterization of geotechnical variability[J]. Canadian Geotechnical Journal, 1999, 36(4): 612-624.
    [19] EL-RAMLY H, MORGENSTERN N R, CRUDEN D M. Probabilistic stability analysis of a tailings dyke on presheared clay-shale[J]. Canadian Geotechnical Journal, 2003, 40(1): 192-208.
    [20] VANMARCKE E H. Reliability of earth slopes[J]. Journal of the Geotechnical Engineering Division, ASCE, 1977, 103(GT11): 1247-1265.
    [21] RONOLD M. Random field modeling of foundation failure modes[J]. Journal of Geotechnical Engineering, ASCE, 1990, 166(4): 554-570.
    [22] DEGROOT D J, BAECHER G B. Estimating autocovariance of in situ soil properties[J]. Journal of Geotechnical Engineering, ASCE, 1993, 129(1): 147-166.
    [23] 高大钊. 岩土工程设计安全度指标及其应用[J]. 工程勘察, 1996(1): 1-6. (GAO Da-zhao. Safety index of geotechnical design and its application[J]. Geotechnical Investigation and Surveying, 1996(1): 1-6. (in Chinese))
    [24] 冷伍明. 基础工程可靠度分析与设计理论[M]. 长沙: 中南大学出版社, 2000. (LENG Wu-ming. Reliability analysis and design theory for foundation engineering[M]. Changsha: Central South University Press, 2000. (in Chinese))
    [25] 李小勇, 谢康和, 虞 颜. 土性指标相关距离性状的研究[J]. 土木工程学报, 2003, 36(8): 91-95. (LI Xiao-yong, XIE Kang-he, YU Yan. Research of the characteristics of correlation distance on soil properties indexes[J]. China Civil Engineering Journal, 2003, 36(8): 91-95. (in Chinese))
    [26] 谢桂华. 岩土参数随机性分析与边坡稳定可靠度研究[D]. 长沙: 中南大学, 2009. (XIE Gui-hua. Stochastic analysis of geotechnical parameters and study on stable reliability of slope[D]. Changsha: Central South University, 2009. (in Chinese))
    [27] 闫澍旺, 朱红霞, 刘 润. 天津港土性相关距离的计算研究和统计分析[J]. 岩土力学, 2009, 30(7): 2179-2185. (YAN Shu-wang, ZHU Hong-xia, LIU Run. Numerical studies and statistic analyses of correlation distances of soil properties in Tianjin Port[J]. Chinese Jounal of Rock and Soil Mechanics, 2009, 30(7): 2179-2185. (in Chinese))
    [28] 吴振君, 葛修润, 王水林. 考虑地质成因的土坡可靠度分析[J]. 岩石力学与工程学报, 2011, 30(9): 1904-1911. (WU Zhen-jun, GE Xiu-run, WANG Shui-lin. Reliability analysis of soil slope stability considering geologic origin[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1904-1911. (in Chinese))
    [29] HICKS M A, SAMY K. Influence of heterogeneity on undrained clay slope stability[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2002, 35(1): 41-49.
    [30] HALDAR S, BABU G L S. Design of laterally loaded piles in clays based on cone penetration test data: a reliability-based approach[J]. Géotechnique, 2009, 59(7): 593-607.
    [31] JI J, LIAO H J, LOW B K. Modeling 2-D spatial variation in slope reliability analysis using interpolated autocorrelations[J]. Computers and Geotechnics, 2012, 40: 135-146.
    [32] 苏国韶, 肖义龙. 边坡可靠度分析的高斯过程方法[J]. 岩土工程学报, 2011, 33(6): 916-920. (SU Guo-shao, XIAO Yi-long. Gaussian process method for slope reliability analysis[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 916-920. (in Chinese))
    [33] TABARROKI M, AHMAD F, BANAKI R, JHA S, CHING J. Determining the factors of safety of spatially variable slopes modeled by random fields[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2082-2095.
    [34] 王 宇, 王春磊, 汪 灿, 等. 边坡可靠性评价的向量投影响应面研究及应用[J]. 岩土工程学报, 2011, 33(9): 1434-1439. (WANG Yu, WANG Chun-lei, WANG Can, et al. Reliability evaluation of slopes based on vector projection response surface and its application[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(9): 1434-1439. (in Chinese))
计量
  • 文章访问数:  667
  • HTML全文浏览量:  57
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-14
  • 发布日期:  2014-03-19

目录

    /

    返回文章
    返回