• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

粒状材料临界状态的颗粒级配效应

李罡, 刘映晶, 尹振宇

李罡, 刘映晶, 尹振宇. 粒状材料临界状态的颗粒级配效应[J]. 岩土工程学报, 2014, 36(3): 452-457. DOI: 10.11779/CJGE201403007
引用本文: 李罡, 刘映晶, 尹振宇. 粒状材料临界状态的颗粒级配效应[J]. 岩土工程学报, 2014, 36(3): 452-457. DOI: 10.11779/CJGE201403007
LI Gang, LIU Ying-jing, YIN Zhen-yu. Grading effect on critical state behavior of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 452-457. DOI: 10.11779/CJGE201403007
Citation: LI Gang, LIU Ying-jing, YIN Zhen-yu. Grading effect on critical state behavior of granular materials[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 452-457. DOI: 10.11779/CJGE201403007

粒状材料临界状态的颗粒级配效应  English Version

基金项目: 国家自然科学基金项目(41240024,51161130523); 欧盟玛丽居里行动计划项目(PIAPP-GA-2011-286397); 高等学校博士学科点专项科研基金项目(20110073120012)
详细信息
    作者简介:

    李 罡(1984- ),男,博士研究生,主要从事土力学研究。E-mail: engineer.ligang@gmail.com。

    通讯作者:

    尹振宇

  • 中图分类号: TU411

Grading effect on critical state behavior of granular materials

  • 摘要: 采用理想颗粒材料(DEM理想球体)、人工颗粒材料(玻璃球)和天然颗粒材料(Hostun砂),通过数值和室内常规三轴排水试验研究了颗粒材料级配对其应力-应变响应和临界状态的影响规律。试验结果表明:在相同加载初始条件下(e0 = 0.574,p0' = 400 kPa),随着不均匀系数Cud60/d10)的增大,试样在q-ε1平面上从剪胀变为剪缩,在εv1平面上表现出由应变软化转变为应变硬化的特性。通过不同围压下的三轴排水试验,在e-p'q-p'平面上分别对不同级配的颗粒材料集合体绘制了临界状态线,e-p'平面随着Cu的增大临界状态线往下偏移,而在q-p'平面上临界状态线不随Cu的改变而改变。
    Abstract: By adopting the idealized granular materials (DEM sphere), artificial materials (glass bead) and natural materials (Hostun sand), the grading effect on the stress-strain and the critical state behavior of granular materials is investigated through numerical and conventional drained triaxial tests. The results reveal that for the samples with the same initial loading conditions (e0 = 0.574, p'0 = 400 kPa), granular materials with a wider particle distribution display more contractive behavior and also strain hardening upon shearing. Furthermore it is found that the critical state line in the e-p' plane shifts downward as grading broadens with an increase of the coefficient of uniformity Cu, whereas the critical state line in the q-p' plane appears to be independent of the coefficient of uniformity Cu.
  • [1] HU W, YIN Z Y, DANO C, et al. A constitutive model for granular materials considering grain breakage[J]. Science China Technological Sciences, 2011, 54(8): 2188-2196.
    [2] 刘汉龙, 孙逸飞, 杨 贵, 等. 粗粒料颗粒破碎特性研究述评[J]. 河海大学学报(自然科学版), 2012, 40(4): 361-369. (LIU Han-long, SUN Yi-fei, YANG Gui, et al. A review of particle breakage characteristics of coarse aggregates[J]. Journal of Hohai University (Natural Sciences), 2012, 40(4): 361-369. (in Chinese))
    [3] 孙海忠, 黄茂松. 考虑颗粒破碎的粗粒土临界状态弹塑性本构模型[J]. 岩土工程学报, 2010, 32(8): 1284-1290. (SUN Hai-zhong, HUANG Mao-song. Critical state elasto-plastic model for coarse granular aggregates incorporating particle breakage[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1284-1290. (in Chinese))
    [4] FOURIE A B, PAPAGEORGIOU G. Defining an appropriate steady state line for Merrriespruit gold tailings[J]. Canadian Geotechnical Journal, 2001, 38(4): 695-706.
    [5] HU W. Contribution a l’etude de l’effet d’echelle dans les materiaux granulaires[D]. Nantes: Ecole Centrale de Nantes, 2009. (HU W. Contribution to the scale effect of granular materials[D]. Nantes: Central University of Nantes, 2009. (in French))
    [6] COOP M. The mechanics of uncemented carbonate sands[J]. Géotechnique, 1990, 40(4): 607-626.
    [7] VERDUGO R, HOZ K. Strength and stiffness of coarse granular soils[C]// Proceeding of Geotechnical Symposium Soil Stress-Strain Behavior: Measurement, Modeling and Analysis. Rome, 2007: 243-252.
    [8] BIAREZ J, HICHER P Y. Influence de la granulométrie et de son évolution par ruptures de grains sur le comportement mécanique de matériaux granulaires[J]. Revue Francaise de Genie Civil, 1997, 1(4): 607-631. (Influence of grains breakage on the mechanical behaviors of granular materials [J]. Journal of French Civil Engineering, 1997, 1(4): 607-631. (in French))
    [9] DAOUADJI A, HICHER P Y, RAHMA A. An elastoplastic model for granular materials taking into account grain breakage[J]. European Journal of Mechanics-A/Solids, 2001, 20(1): 113-137.
    [10] 尹振宇, 许 强, 胡 伟. 考虑颗粒破碎效应的粒状材料本构研究: 进展及发展[J]. 岩土工程学报, 2012, 34(12): 2170-2180. (YIN Zhen-yu, XU Qiang, HU Wei. Constitutive relations for granular materials considering particle crushing: review and development[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2170-2180. (in Chinese))
    [11] WOOD D M, MAEDA K. Changing grading of soil: effect on critical states[J]. Acta Geotechnica, 2007, 3(1): 3-14.
    [12] YAN W, DONG J. Effect of particle grading on the response of an idealized granular assemblage[J]. International Journal of Geomechanics, 2011, 11(4): 276-285.
    [13] BELKHATIR M, ARAB A, SCHANZ T, et al. Laboratory study on the liquefaction resistance of sand-silt mixtures: effect of grading characteristics[J]. Granular Matter, 2011, 13(5): 599-609.
    [14] YUDHBIR, ABEDINZADEH R. Quantification of particle shape and angularity using the image analyzer[J]. Geotechnical Testing Journal, 1991, 14(3): 296-308.
    [15] CHO G, DODDS J, SANTAMARINA J. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 591-602.
    [16] MAEDA K, FUKUMA M, NUKUDANI E. Macro and micro critical states of granular materials with different grain shapes[C]// Proceeding of the 6th International Conference on Micromechanics of Granular Media. Golden, 2009: 829-832.
    [17] CAVARRETTA I. The influence of particle characteristics on the engineering behaviour of granular materials[D]. London: Imperial College, 2009.
    [18] ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351-415.
    [19] LI X S, WANG Y. Linear representation of steady-state line for sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(12): 1215-1217.
  • 期刊类型引用(8)

    1. 王子业,谭勇,龙莹莹. 不同渗漏位置下管道渗蚀物理模型试验及细观机理研究. 浙江大学学报(工学版). 2024(06): 1209-1220 . 百度学术
    2. 姬建,闫亚东,王涛,袁雪阳. 埋地管线破损-漏土诱发地面塌陷过程的流固耦合离散元模拟. 河海大学学报(自然科学版). 2024(04): 35-46 . 百度学术
    3. 张治国,程志翔,张孟喜,马少坤,陈杰,吴钟腾,李云正. 盾构隧道接缝漏损诱发水土流失模型试验及离散元分析. 中国公路学报. 2023(01): 162-175 . 百度学术
    4. 张玉,梁昊,林亮,周游,赵青松. 不同沉降方式下埋地管道力学响应试验研究. 岩土力学. 2023(06): 1645-1656 . 百度学术
    5. 潘泓,蔡磊,罗俊兴,曹洪,骆冠勇. 上细下粗富水复合砂层渗透破坏机制试验及初步工程应用研究. 岩石力学与工程学报. 2023(07): 1778-1788 . 百度学术
    6. 李林海,郭文娟,丁强,王光辉,高金良,关鹏,隋景林,张洪英,刁美玲. 基于高空间分辨率BOTDA的土体沉降监测研究. 哈尔滨商业大学学报(自然科学版). 2023(06): 702-708 . 百度学术
    7. 张治国,程志翔,陈杰,吴钟腾,李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验. 隧道与地下工程灾害防治. 2022(03): 77-91 . 百度学术
    8. 梁志滔. 基于沉降速率划分的施工地表沉降预测方法. 测绘技术装备. 2021(02): 15-18 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  635
  • HTML全文浏览量:  16
  • PDF下载量:  35815
  • 被引次数: 16
出版历程
  • 收稿日期:  2013-03-11
  • 发布日期:  2014-03-19

目录

    /

    返回文章
    返回