• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂土隧道施工对下卧管线影响的试验和数值模拟分析

王正兴, 缪林昌, 王冉冉, 王非, 王小龙

王正兴, 缪林昌, 王冉冉, 王非, 王小龙. 砂土隧道施工对下卧管线影响的试验和数值模拟分析[J]. 岩土工程学报, 2014, 36(1): 182-188. DOI: 10.11779/CJGE201401019
引用本文: 王正兴, 缪林昌, 王冉冉, 王非, 王小龙. 砂土隧道施工对下卧管线影响的试验和数值模拟分析[J]. 岩土工程学报, 2014, 36(1): 182-188. DOI: 10.11779/CJGE201401019
WANG Zheng-xing, MIAO Lin-chang, WANG Ran-ran, WANG Fei, WANG Xiao-long. Physical model tests and PFC3D modeling of soil-pipe interaction in sands during tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 182-188. DOI: 10.11779/CJGE201401019
Citation: WANG Zheng-xing, MIAO Lin-chang, WANG Ran-ran, WANG Fei, WANG Xiao-long. Physical model tests and PFC3D modeling of soil-pipe interaction in sands during tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 182-188. DOI: 10.11779/CJGE201401019

砂土隧道施工对下卧管线影响的试验和数值模拟分析  English Version

基金项目: 国家自然科学基金项目(51278099)
详细信息
    作者简介:

    王正兴(1981- ),男,江苏海门人,博士研究生,工程师,主要从事隧道施工对管线性状影响的研究。E-mail: johnston_2002@163.com。

    通讯作者:

    缪林昌

  • 中图分类号: TU470

Physical model tests and PFC3D modeling of soil-pipe interaction in sands during tunnelling

  • 摘要: 对砂土中隧道施工引起管线性状变化进行了室内模型试验,分析了管土相互作用的一些宏观特性,为进一步进行三维颗粒流细观模拟提供必要的参数和宏观依据。在室内模型试验的基础上,建立了隧道垂直下穿既有管线颗粒流分析模型,验证了室内模型试验的宏观现象。在此基础上分析了隧道施工过程中管土相互作用的机理、管周土体的应力与位移以及管线的剪应变和弯矩。分析结果可为工程实践中确定管线加固位置提供理论依据。
    Abstract: A series of 1g physical model tests are carried out to investigate the tunnelling effects on existing pipelines. A tunnel is excavated directly underneath the existing pipeline. The tunneling-induced pipeline deformation mechanism and the stress field around the pipeline are studied. In addition, three-dimensional discrete element back-analyses (PFC3D) are conducted to improve the understanding of soil-pipe interaction problem. Based on the measured and computed results, change of the tunneling-induced stress, displacement, shear strain and bending moment in the existing pipeline are analyzed. The findings in this study can give theoretical basis for the reinforcement design of pipelines.
  • [1] CALVETTI F, PRISCO C D, NOVA R. Experimental and numerical analysis of Soil-Pipe interaction[J]. Geotechnical and Geoenvironmental Engineering, 2004, 130(12): 1292-1298.
    [2] GUO P J, STOLLE D F E. Lateral Pipe-Soil interaction in sand with reference to scale effect[J]. Geotechnical and Geoenvironmental Engineering, 2005, 131(3): 338-348.
    [3] YIMSIRL S, SOGA K, YOSHIZAKI K. Lateral and upward Soil-Pipeline interactions in sand for deep embedment conditions[J]. Geotechnical and Geoenvironmental Engineering, 2004, 130(8): 830-842.
    [4] TRAUTMAN C H, O’ROURKE T D. Lateral force- displacement response of buried pipe[J]. Geotechnical and Geoenvironmental Engineering, 1985, 111(9): 1077-1092.
    [5] VORSTER T E B. The effects of tunnelling on buried pipes[D]. Cambridge: Cambridge University, 2005.
    [6] 魏 纲, 余振翼, 徐日庆. 顶管施工中相邻垂直交叉地下管线变形的三维有限元分析[J]. 岩石力学与工程学报, 2004, 23(15): 2527-2535. (WEI Gang, YU Zhen-yi, XU Ri-qing. 3D fem analysis on deformation of perpendicularly crossing buried pipeline in pipe jacking[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(15): 2527-2535. (in Chinese))
    [7] 姜 玲, 汪中卫, 王旭东. 盾构开挖引起地下管线竖向位移的初参数法求解[J]. 南京工业大学学报, 2010, 4(32): 73-76. (JIANG Ling, WANG Zhong-wei, WANG Xu-dong. Initial parameter method for solving vertical displacement of buried pipelines caused by tunnel excavation[J]. Journal of Nanjing University of Technology, 2010, 4(32): 73-76. (in Chinese))
    [8] ATTWELL P B, YEATES J, SELBY A R. Soil movements induced by tunnelling and their effects on pipelines and structures[M]. London: Blackie and Son Ltd, 1986.
    [9] 张坤勇, 王 宇, 艾英钵. 任意荷载下管土相互作用解答[J]. 岩土工程学报, 2010, 32(8): 1189-1193. (ZHANG Kun-yong,WANG Yu,AI Ying-bo. Analytical solution to interaction between pipelines and soils under arbitrary loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(8): 1189-1193. (in Chinese))
    [10] KLAR A. Shell versus beam representation of pipes in the evaluation of tunnlling effects on pipelines[J]. Tunnelling and Underground Space Technology, 2008, 23(4): 431-437.
    [11] KLAR A, MARSHALL A M, SOGA K, et al. Tunnelling effects on jointed pipelines[J]. Canadian Geotechnical Journal, 2008, 45(1): 131-139.
    [12] KLAR A, VORSTER T E B, SOGA K, et al. Soil-pipe interaction due to tunnelling: comparison between Winkler and elastic continuum solutions[J]. Géotechnique, 2005, 55(6): 461-466.
    [13] KLAR A, VORSTER T E B, SOGA K, et al. Elasto-plastic solution for soil-pipe-tunnel interaction[J]. Geotechnical and Geoenvironmental Engineering, 2007, 133(7): 782-792.
    [14] VORSTER T E B, KLAR A, SOGA K, et al. Estimating the effects of tunnelling on existing pipelines[J]. Geotechnical and Geoenvironmental Engineering, 2005, 131(11): 1399-1410.
    [15] RANKINE W J. Ground movements resulting from urban tunneling: predictions and effects[C]// Conference of Engineering Geology of Underground Movements. Nottingham, 1988: 79-92.
    [16] MAIR R J, TAYLOR R N. Theme lecture: Bored tunnelling in the urban environment[C]// Proc Fourteenth International Conference on Soil Mechanics and Foundation Engineering. Hamburg, Balkema, 1997: 2353-2385.
    [17] 周 健, 白彦峰, 张 昭, 等. 砂土中群桩室内模型试验及颗粒模拟研究[J]. 岩土工程学报, 2009, 31(8): 1276-1280. (ZHOU Jian, BAI Yan-feng, ZHANG Zhao, et al. Lab model tests and PEC2D modeling of pile groups in sands[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(8): 1276-1280. (in Chinese))
    [18] CELESTINO T B, GOMES R A M P, BORTOLUCCI A A. Errors in ground distortions due to settlement trough adjustment[J]. Tunnelling and Underground Space Technology, 2000, 15(1): 97-100.
    [19] MARSHALL A M, KLAR A, MAIR R J. Tunnelling beneath buried pipes-a view of soil strain and its effect on pipeline behavior[J]. Geotechnical and Geoenvironmental Engineering, 2010, 136(12): 1664-1672.
    [20] BRANSBY M F. Selection of p-y curves for the design of single laterally loaded piles[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(15): 1909-1926.
    [21] KAGAWA T, KRAFT L M. Lateral load-deflection relationship of piles subjected to dynamic loadings[J]. Soils and Foundations, 1980, 20(4): 19-35.
  • 期刊类型引用(4)

    1. 勒治华,于庆磊,蒲江涌. 充填散体材料侧限压缩试验径径比的确定方法. 中南大学学报(自然科学版). 2023(03): 1054-1061 . 百度学术
    2. 宋飞,朱婕,付娆. 考虑蠕变变形的格室加筋土力学性质研究. 地下空间与工程学报. 2023(S1): 165-173 . 百度学术
    3. 付娆,宋飞. 格室加筋土等效强度计算方法对比研究. 地基处理. 2021(03): 188-194 . 百度学术
    4. 朱家宏. 勘察土工试验数据科学性及准确性的提升策略分析——以岩土工程为例. 冶金管理. 2021(17): 126-127 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  431
  • HTML全文浏览量:  6
  • PDF下载量:  341
  • 被引次数: 8
出版历程
  • 收稿日期:  2013-06-24
  • 发布日期:  2014-01-20

目录

    /

    返回文章
    返回